The Crystal Structures of $\mathrm{NaHg}_{2}, \mathbf{N a H g}$ and $\mathrm{Na}_{3} \mathrm{Hg}_{2}$

By J. W. Nielsen and N. C. Baenziger
Department of Chemistry, The State University of Iowa, Iowa City, Iowa, U.S.A.

(Received 10 August 1953)

Abstract

The crystal structures of NaHg and $\mathrm{Na}_{3} \mathrm{Hg}_{2}$ have been determined from Weissenberg and precession camera data. NaHg is end-centered orthorhombic, $a=7 \cdot 19, b=10 \cdot 79, c=5 \cdot 21 \AA, Z=8$. Pairs of mercury atoms are grouped in ribbons which extend through the crystal. $\mathrm{Na}_{3} \mathrm{Hg}_{2}$ is tetragonal with $a=8.52, c=7.80 \AA, Z=4$. Mercury atoms are in isolated groups of four with a nearly square arrangement. From powder diagrams NaHg_{2} was found to be the hexagonal AlB_{2} type with $a=5.029, c=3.230 \AA$.

Introduction

The determination of the crystal structures of the sodium amalgams has been undertaken as part of a program for determining the structures of compounds formed by the alkali, alkaline earth and similar metals with the metals of group II-B. Of the five sodiummercury compounds which are reported here, NaHg_{4}, $\mathrm{NaHg}_{2}, \mathrm{NaHg}, \mathrm{Na}_{3} \mathrm{Hg}_{2}$ and $\mathrm{Na}_{5} \mathrm{Hg}_{2}$, the structures of three, $\mathrm{NaHg}_{2}, \mathrm{NaHg}$ and $\mathrm{Na}_{3} \mathrm{Hg}_{2}$, have been completed. There is considerable disagreement in the older literature as to the number and composition of the sodium amalgams (Hansen, 1936), and further work is necessary to determine the number, composition and structure of the remaining sodium-mercury compounds.

Experimental technique

Since the compounds of sodium and mercury decompose rapidly in the presence of oxygen or moisture, it is necessary to carry out all the preparations in an inert atmosphere or under vacuum. The procedure for preparing the amalgams was to bring known amounts of pure mercury and pure sodium together in a reaction vessel through which dry nitrogen was flowing at a rapid rate. Since the reaction is quite exothermic, the mixing was done slowly and a homogeneous sample was obtained by merely shaking the reaction vessel. Subsequent analyses indicated that the samples were homogeneous and that the compositions were those desired to within 1% of the molar ratio.

Although this technique produced excellent powder specimens, it was found necessary to modify the method slightly to obtain single crystals. By preparing a sample having the deesired atomic ratio and then altering its compositions slightly by adding a small amount of sodium or mercury, so that the crystals could form from the melt over a range of temperatures, it was possible to obtain single-crystal specimens. The adjustment of composition was done by trial and error. The sample was melted under vacuum in a small vessel fitted with a closed side-arm tube into which the pure molten alloy was poured and allowed to cool. This side-arm tube was then sealed off under vacuum.

Single crystals were mounted in capillaries by breaking the sample tubes under an inert atmosphere, scraping some crystals free from the sample, and picking up these crystals with a capillary previously coated inside with Canada balsam and attached to an aspirator. This capillary was sealed and examined under a microscope for single crystals, likely specimens were selected, and the capillary was sealed off on each side of the crystals at a convenient distance. The crystal was fixed in place by gently warming the capillary until the Cariada balsam softened. Since this method often resulted in chips of crystals, the Buerger precession camera was very useful in aligning the specimens. Commercial nitrogen which had been passed through a drying train was used as an inert atmosphere. Single crystal specimens mounted in the manner outlined have kept for nine months without signs of decomposition.

$\mathbf{N a H g}_{2}$

NaHg_{2} was found from a powder diagram to be isostructural with the aluminum boride type. The hexagonal cell has the dimensions

$$
\begin{aligned}
& a=5 \cdot 0290 \pm 5, c=3 \cdot 2304 \pm 16 \AA, U=70 \cdot 9 \AA^{3}, \\
& Z=1, D_{x}=9.96 \text { g.cm. } .^{-3} .
\end{aligned}
$$

The density from the data of Maey (1899) is 9.94 g.cm. ${ }^{-3}$.

Unlike those of the other sodium amalgams, the lines in the back-reflection region for NaHg_{2} (m.p. $349^{\circ} \mathrm{C}$.) were sufficiently resolved to obtain a precise determination of the lattice constants by the method of Cohen (1935). The precision measure was calculated by the method of Jette \& Foote (1935). The interatomic distances are given in Table 1.

Table 1. Interatomic distances in NaHg_{2}

Atom	Number of neighbors	Distance (\AA)
Na	12 Hg	3.16
	2 Na	3.23
Hg	3 Hg	2.90
	6 Na	3.16
	2 Hg	3.23

NaHg

NaHg is gold in color, which strikingly differentiates it from the other sodium amalgams observed. Zerolayer Weissenberg data ($h k 0$) were obtained from a single erystal with $\mathrm{Cu} K \alpha$ and Mo $K \alpha$ radiation. The Buerger precession camera using Mo $K \alpha$ radiation ($\mu=25^{\circ}$, magnification factor, 6.00) was employed to obtain ($h 0 l$) and ($0 k l$) data. Intensities were estimated visually, using a graduated scale. Crude absorption corrections were made assuming a cylindrical rod shape for the crystal for the Weissenberg data, and a flat plate shape for the precession data. The endcentered orthorhombic unit cell dimensions as determined from a powder diagram are

$$
\begin{aligned}
& a=7 \cdot 19, b=10 \cdot 79, c=5 \cdot 21 \AA, U=404 \AA^{3}, \\
& Z=8, D_{x}=7 \cdot 36 \text { g.cm. }{ }^{-3} .
\end{aligned}
$$

The density reported by Maey (1899) is 7.26 g.cm. ${ }^{-3}$.
The reflections observed were those characteristic for the space groups $C m c-C_{2 v}^{12}, C 2 c m-C_{2 v}^{16}$ or $C m c m-D_{2 h}^{17}$.

Since $C 2 \mathrm{~cm}$ places two atoms directly over one another in the c direction and c is only $5 \cdot 21 \AA$, this space group was not considered. $C m \mathrm{~cm}$ was assumed to be the correct space group in preliminary work. $C m c$, which contains an additional parameter, was not needed to secure intensity agreement.
A Patterson projection made using ($h k 0$) data was interpreted to give a rough picture of the structure. The structure was further refined by electron-density projections on (100) and (001) followed by leastsquares treatment of the combined ($h k 0$), ($0 k l$) and ($h 0 l$) data. The electron-density maps (Figs. 1 and 2) did not give a clear indication of sodium atom positions (nor did $\boldsymbol{F}_{\boldsymbol{o}}-\boldsymbol{F}_{\mathrm{c}}$ maps), so positions were assumed prior to the least-squares treatment which would place them as nearly equidistant from their neighbors as possible. The least-squares treatment produced a shift from these values ($y_{\mathrm{Na}}=0.36$ and 0.82) to the values listed below. A negligible shift (-0.0003 parameter units) was found for the mercury atoms.

Table 2. Structure-factor data for NaHg

Indices	F_{0}	F_{c}	Indices	F_{0}	F_{C}	Indices	F_{0}	F_{c}
200	414	-419	660	-	34	202	282	318
400	255	284	860	-	43	204	178	-176
600	-	7	10,6,0	39	-46	206	51	76
800	57	-40	170	115	-73			
10,0,0	57	76	370	130	107	402	211	-221
			570	161	-145	404	64	123
110	*	-	770	102	89			
310	220	-271	970	59	-53	602	-	7
510	228	254				604	-	6
710	129	- 183	080	105	-73			
910	63	87	280	88	59	802	47	34
			480	-	- 32			
020	250	231	680	-	5	021	331	-419
220	189	-229	880	-	8	022	170	-173
420	93	81				023	257	257
620	-	- 27	190	-	4	024	128	94
820	-	-30	390	-	- 38	025	125	-126
10,2,0	-	27	590	-	28	026	58	-40
			790	-	- 28			
130	-	-15	990	-	11	041	369	-383
330	-	20				042	251	242
530	-	- 27	0,10,0	146	124	043	257	244
730	-	16	2,10,0	102	-106	044	140	-132
930	-	8	4,10,0	57	55	045	131	-117
			6,10,0	-	-11			
040	276	-309				061	74	52
240	220	197	1,11,0	64	44	062	360	258
440	145	-133	3,11,0	90	- 68	063	65	- 36
640	-	6	5,11,0	103	93	064	143	-152
840	-	21	7,11,0	79	-59	065	-	18
10,4,0	-	-38	9,11,0	39	35			
						081	252	237
150	102	-52	0,12,0	110	102	082	71	61
350	219	234	2,12,0	102	-91	083	163	-165
550	226	-195	4,12,0	46	35	084	49	-36
750	159	164						
950	80	-71	1,13,0	-	6	0,10,1	114	114
			3,13,0	-	-33	0,10,2	108	-104
060	356	-326				0,10,3	92	- 81
260	252	304	002	314	-516			
460	145	-132	004	232	266	0,12,1	34	- 43
			006	105	-109	0,12,2	84	-86

* Not estimated because of background.

Fig. 1.
Fig. 2.
Fig. 1. Electron density of NaHg projected on (100).
Fig. 2. Electron density of NaHg projected on (001).

$$
\begin{gathered}
\quad(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, 0\right)+ \\
8 \mathrm{Hg} \quad \text { in }(g): x, y, \frac{1}{4} ; \bar{x}, y, \frac{1}{4} ; x, \bar{y}, \frac{3}{4} ; \bar{x}, \bar{y}, \frac{3}{4} \\
\text { with } \quad x=0.212 \pm 0.001_{5}, y=0.088 \pm 0 \cdot 001_{0} .
\end{gathered}
$$

$4 \mathrm{Na}_{1}$ in (c): $0, y, \frac{3}{4} ; 0, \bar{y}$, $\frac{3}{4}$, with $y=0.368 \pm 0.010$.
$4 \mathrm{Na}_{2}$ in (c): with $y=0.814 \pm 0.006$.

Fig. 3. Structure of NaHg. Large atoms are Na. Two unit cells are shown with some of the atoms repeated by the unit translations in the a and b directions omitted.

The standard deviations in the parameters which are listed above were determined from the least-squares treatment (Cruickshank, 1949a). The value of $R=$ $\Sigma\left|\left|F_{o}\right|-\left|F_{c}\right|\right| \div \Sigma F_{o}$ prior to the least-squares treatment was 0.207 if all reflections were included, $0 \cdot 150$ if F 's were omitted when F_{o} was zero. After the leastsquares refinement, the values of R were 0.203 and $0 \cdot 146$ respectively, indicating the relative insensitivity of the discrepancy factor to the positions of the sodium atoms. The temperature factor used to adjust the calculated to the observed data had a value of $B=$ $3.55 \AA^{2}$. The structure-factor data are listed in Table 2. The final structure is shown in Fig. 3. A list of interatomic distances is given in Table 3.

Atom	Number of neighbors	Distance (\AA)
Hg	1 Hg	3.05
	2 Hg	$3 \cdot 22$
	$1 \mathrm{Na}_{1}$	3.14
	$3 \mathrm{Na}_{2}$	$3 \cdot 20$
	$1 \mathrm{Na}_{2}$	3.33
	$2 \mathrm{Na}_{1}$	$3 \cdot 36$
	$1 \mathrm{Na}_{1}$	$3 \cdot 38$
Na_{1}	2 Hg	$3 \cdot 14$
	$2 \mathrm{Na}_{2}$	$3 \cdot 26$
	4 Hg	$3 \cdot 36$
	2 Hg	3.38
	$2 \mathrm{Na}_{2}$	$3 \cdot 64$
Na_{2}	6 Hg	$3 \cdot 20$
	$2 \mathrm{Na}_{1}$	3.26
	2 Hg	3.33
	$2 \mathrm{Na}_{1}$	3.64
	$\mathrm{Na}_{3} \mathbf{H g}{ }_{2}$	

$\mathrm{Na}_{3} \mathrm{Hg}_{2}$ has a primitive tetragonal unit cell with $a=8 \cdot 52, c=7 \cdot 80 \AA, U=566 \AA^{3}, D_{m}$ (Maey, 1899) $=5.55 \mathrm{~g} . \mathrm{cm} .^{-3}, Z=4, D_{x}=5.51 \mathrm{~g} . \mathrm{cm} .^{-3}$, formula weight $=470 \cdot 21$.

The general extinctions which were observed, (0 kl) present only with $k+l$ even, are those which are characteristic for space groups $P 4_{2} / m n m, P 4 n 2$ and $\mathrm{P}_{2} \mathrm{~nm}$. Precession camera diagrams were used to obtain ($h k 0$) data (Mo $K \alpha$ radiation) and Weissenberg diagrams were made to obtain the ($0 k l$) data $(\mathrm{Cu} K \alpha)$ from the same crystal. Intensities were estimated visually as for NaHg .

Preliminary positions for the mercury atoms were obtained by inspection of the ($h k 0$) precession diagrams. The electron-density projection made using the $F(h k 0)$ data clearly indicated the positions of the mercury atoms as well as the positions of four of the twelve sodium atoms. Additional small peaks were also present in the electron-density map but in twice as great a number as sodium atoms in the structure. The eightfold set of peaks labeled A in Fig. 4 could be eliminated on spatial considerations. Satisfactory distances between atoms could be obtained by placing the atoms at the other peaks on the electron-density map.

Fig. 4. Electron density of $\mathrm{Na}_{3} \mathrm{Hg}_{2}$ projected on (001).
A least-squares refinement of the data indicated a negligible shift for the mercury atom, 0.005 parameter unit for one type of sodium atom and 0.001 parameter unit for the other.

The atomic positions are
8 Hg in (j):
$x, x, z ; \bar{x}, \bar{x}, z ; \frac{1}{2}+x, \frac{1}{2}-x, \frac{1}{2}+z ;$
$\frac{1}{2}-x, \frac{1}{2}+x, \frac{1}{2}+z ; x, x, \bar{z} ; \bar{x}, \bar{x}, \bar{x} ;$
$\frac{1}{2}+x, \frac{1}{2}-x, \frac{1}{2}-z ; \frac{1}{2}-x, \frac{1}{2}+x, \frac{1}{2}-z$
with
$4 \mathrm{Na}_{1}$ in (g): $x, \bar{x}, 0 ; \bar{x}, x, 0 ; \frac{1}{2}+x, \frac{1}{2}+x, \frac{1}{2} ;$

$$
\frac{1}{2}-x, \frac{1}{2}-x, \frac{1}{2}
$$

with $\quad x=0 \cdot 210 \pm 0 \cdot 010$.
$4 \mathrm{Na}_{2}$ in (f): $x, x, 0 ; \bar{x}, \bar{x}, 0 ; \frac{1}{2}+x, \frac{1}{2}-x, \frac{1}{2}$;
$\begin{array}{ll} \\ \text { with } & \begin{array}{l}\frac{1}{2}-x, \frac{1}{2}+x, \frac{1}{2} \\ x=0.368 \pm 0.010 .\end{array}\end{array}$
$4 \mathrm{Na}_{3}$ in (c): $0, \frac{1}{2}, 0 ; \frac{1}{2}, 0,0 ; 0, \frac{1}{2}, \frac{1}{2} ; \frac{1}{2} .0, \frac{1}{2}$.
The errors in the atomic parameters are standard deviations as calculated from the least-squares treatment. The standard deviation of the x, y coordinates of the sodium atom in special position (c) is $0.04 \AA$, as determined from the electron-density maps by Cruickshank's method (Cruickshank, 1949b). The discrepancy factor, R, for the ($h k 0$) data is 0.084 .

The z parameters were obtained from examination of the (0 kl) data. If the structure is assumed to be based on space group $\mathrm{P4}_{2} / \mathrm{mnm}$, then spatial considerations fix the positions of the Na_{1} and Na_{2} atoms; there is a choice in the positions of the Na_{3} atoms to be located in (c) with z values of 0 and $\frac{1}{2}$, or in (d) with z values of $\frac{1}{4}$ and $\frac{3}{4}$; and the z parameter of the mercury atoms must be determined. A Patterson projection using $F^{2}(0 k l)$ data clearly showed that the Hg atoms were separated by about $\frac{3}{8} c$ in the [001] direction, and it indicated that the Na_{3} atoms were in position (c). Structure factors calculated with $z_{\mathrm{Hg}}=$ $0 \cdot 190$ gave good agreement with the observed values.

Table 4. Structure-factor data for $\mathrm{Na}_{3} \mathrm{Hg}_{2}$								
Indices	F_{0}	F_{c}	Indices	F_{0}	F_{c}	Indices	$\boldsymbol{F}_{\boldsymbol{o}}$	$\boldsymbol{F}_{\boldsymbol{c}}$
200	-	1	440	292	330	031	151	-118
400	373	-391	540	-	0	033	218	235
600	-	18	640	-	7	035	176	-155
800	180	179	740	-	-1	037	70	46
10,0,0	15	5	840	135	-131			
110	267	277	940	-	2	040	323 204	387 268
210	353	-337	550	97	108	044	-	-8
310	296	-283	650	116	-115	046	149	105
410	36	- 23	750	97	- 87	048	163	108
510	195	-185	850	-	-3			
610	199	192				051	55	49
710	111	99	660	19	7	053	160	181
810	-	-5	760	86	- 82	055	124	127
910	58	60	880	-	5	057	65	44
10,1,0	66	-62						
			770	49	52	060	-	-13
220	44	56				062	-	8
320	298	-300	002	300	-280	064	-	7
420	36	14	004	101	91	066	-	4
520	209	206	006	175	170			
620	19	14	008	133	129	071	25	32
720	151	138				073	93	110
820	-	9	011	212	137	075	73	69
920	84	- 82	013	297	298	077	44	28
			015	210	181			
330	195	196	017	84	50	080	138	154
430	59	10	019	18	18	082	86	-88
530	129	121				084	14	13
630	150	14	020	0	1	086	60	51
730	96	102	022	-	2			
830	-	6	024	-	2	091	-	35
930	71	- 64	026	-	- 17	093	49	59
			028	-	1	095	60	48

A least-squares treatment of only the mercury parameter indicated no change in the Hg positions. No attempt was made to vary the (x, y) coordinates of the atoms since these were fixed adequately by the $F(h k 0)$ data. The $F(h k 0)$ data were freer from absorption effects than the $F(0 k l)$ data and therefore were judged to be more reliable.

Placing the sodium atoms in positions (c) seemed to create unnecessarily short distances between sodium atoms. These distances could be made longer by placing the atoms in positions (d). This change in the sodium positions increased the R value from 0.20 to 0.23 , indicating that the sodium atoms were correctly placed in positions (c).

In obtaining the best fit of calculated to observed F values, slightly different temperature factors were found for the ($h k 0$) and ($0 k l$) data ($B=3 \cdot 55 \AA^{2}$ for ($h k 0$) data, $4 \cdot 57 \AA^{2}$ for ($0 k l$)). This difference can be ascribed to a partial correction for absorption effects which differed in the two sets of data.

An examination of the other space-group possibilities shows that, with fixed x and y coordinates, no different z arrangements are possible for the mercury atoms. The positions of the Na_{3} atoms can be altered along the c axis by arbitrary amounts, but the intensity data do not support such changes. The combined R value for ($h k 0$) and ($0 k l$) data for the structure given above is $0 \cdot 125$. The calculated and observed F values

Table 5. Interatomic distances in $\mathrm{Na}_{3} \mathrm{Hg}_{2}$

Atom	Number of neighbors	Distance (\AA)
Hg	1 Hg	$2 \cdot 96$
	1 Hg	$3 \cdot 01$
	1 Na	$3 \cdot 13$
	$2 \mathrm{Na}_{1}$	$3 \cdot 26$
	1 Na	$3 \cdot 28$
	$2 \mathrm{Na}_{1}$	$3 \cdot 30$
	$2 \mathrm{Na}_{3}$	$3 \cdot 68$
Na_{1}	2 Na	$3 \cdot 05$
	2 Hg	$3 \cdot 13$
	4 Hg	$3 \cdot 30$
Na_{2}	1 Na	$3 \cdot 18$
	4 Hg	$3 \cdot 26$
	2 Hg	$3 \cdot 28$
	2 Na	$3 \cdot 33$
Na_{3}	2 Na	$3 \cdot 05$
	2 Na	$3 \cdot 33$
	$4 \mathrm{Hg}_{2}$	$3 \cdot 68$

are listed in Table 4. Interatomic distances are listed in Table 5. In the diagram of the structure given in Fig. 5, some of the atoms on the front and rear faces of the cell have been omitted for greater clarity.

Other Na-Hg phases

Preliminary data have been obtained by Weissenberg methods of NaHg_{4} and by precession camera methods of a phase tentatively designated as $\mathrm{Na}_{5} \mathrm{Hg}_{2} . \mathrm{NaHg}_{4}$
has a hexagonal unit cell with $a=61 \cdot 5, c=9 \cdot 7 \AA$. The cell could contain about 230 units of NaHg_{4}. $\mathrm{Na}_{5} \mathrm{Hg}_{2}$ is rhombohedral with $a=18.52 \AA, \alpha=29^{\circ} 23^{\prime}$ (hexagonal cell dimensions, $a=9 \cdot 39, c=53 \cdot 1 \AA$).

Fig. 5. Structure of $\mathrm{Na}_{3} \mathrm{Hg}_{2}$. Small atoms are Hg . Some of the atoms repeated by the unit translations have been omitted for greater clarity.

Discussion of the structures

NaHg_{2} is isostructural with UHg_{2} (Rundle \& Wilson, 1949) and has very nearly the same unit cell dimensions ($\mathrm{UHg}_{2}, a=4.99, c=3.23 \AA ; \mathrm{NaHg}_{2}, a=5.029, c=$ $3.23 \AA$). The distances between the atoms in this structure are considerably shorter than in the elements, corresponding to the marked decrease in volume upon formation from the elements of 18.9% and the high exothermicity of the formation reaction.

The nature of the environment of the Hg atoms in this structure is such that if, according to Pauling (1947, 1949), one assumes a valence and a corresponding single-bond radius for Hg , then, in order to obtain a self-consistent calculated valence for Hg , the singlebond radius and valence of sodium are no longer arbitrary. Table 6 shows a listing of assumed valences

Table 6. Calculation of Na valence in NaHg_{2}

Assumed valence of Hg	R_{1} for $\mathrm{Hg} *$	Calculated R_{1} for Na	Calculated valence for Na
6	1.348	1.729	12.1
4.5	1.391	1.512	5.4
4	1.406	1.386	3.3
3.5	1.421	1.142	1.3

[^0]for Hg and the corresponding valences and single-bond radii for Na . The most reasonable values according to this scheme would appear to be Hg with a valence of about 4 and Na with a valence of about 3.

In the NaHg structure the mercury atoms group themselves in pairs at a distance close to that in mercury metal, $\mathrm{Hg}-\mathrm{Hg}=3.05 \AA$. The pairs are further grouped into ribbons in which the $\mathrm{Hg}-\mathrm{Hg}$ distance is $3.22 \AA$ between Hg_{2} pairs in the ribbon. These zigzag ribbons extend in the [001] direction in the unit cell and form a C end-centered arrangement. The sodium atoms zigzag along [001] between these ribbons.

The $\mathrm{Na}_{3} \mathrm{Hg}_{2}$ structure has Hg_{4} groups which are nearly square in arrangement. The Hg_{4} group could be considered as two Hg_{2} groups which are rather tightly bound. The Hg_{4} units are isolated in the structure, being completely surrounded by sodium atoms. The $\mathrm{Hg}-\mathrm{Hg}$ distances in the Hg_{4} groups, 3.01 and $2.96 \AA$, are again very close to the values in mercury metal.

The sodium-mercury structures fall into a pattern indicated by Zn and Cd (B-type atoms) with more electropositive elements such as the alkali, alkaline earth and rare earth metals (A-type atoms). When the ratio of B to A atoms is high, the B lattice is threedimensional in character and determines the size of the unit cell and also the size of the holes in the lattice in which the other element is placed. The hole will accommodate the more compressible A elements over a considerable range of sizes less than the size of the hole, but not greater than this size. This is the case for the NaZn_{13}-type structure (Strukturbericht, 1941), the BaCd_{11}-type (Sanderson \& Baenziger, 1953) and the CaZn_{5}-type (Structure Reports, 1951). When the ratio of B to A diminishes, the three-dimensional framework of B atoms must necessarily disappear, but the B-type atoms tend to remain
grouped together as long as possible. In NaHg, B atoms group into ribbons; in $\mathrm{Na}_{3} \mathrm{Hg}_{2}$ the B atoms are in isolated groups of four. Preliminary structural investigation of $\mathrm{Na}_{5} \mathrm{Hg}_{2}$ indicates that the Hg atoms are isolated in the structure. NaHg_{2} might be considered as transitional between a three-dimensional net of Hg atoms and a two-dimensional layer net of Hg atoms.

Further data on the structures of A-type elements with the B-type elements are very meagre, so that the extent of the structural sequence is unknown. However, a sodium-lead structure, NaPb , contains tetrahedral Pb_{4} units isolated in the structure (Marsh \& Shoemaker, 1953).

This work was done under contract AT(11-1)-72, Project No. 4, with the U.S. Atomic Energy Commission. One of us (J. W. N.) wishes to acknowledge support from an Allied Chemical and Dye Corporation fellowship for part of this work.

References

Cohen M. (1935). Rev. Sci. Instrum. 7, 68.
Cruickshank, D. W. J. (1949a). Acta Cryst. 2, 154.
Cruickshank, D. W. J. (1949b). Acta Cryst. 2, 65.
Hansen, M. (1936). Der Aufbau der Zweistofflegierungen. Berlin: Springer.
Jette, E. \& Foote, F. (1935). J. Chem. Phys. 3, 605. MaEy, E. (1899). Z. phys. Chem. 29, 119.
Marsh, R. E. \& Shoemaker, D. P. (1953). Acta Cryst. 6, 197.
Pauling, L. (1947). J. Amer. Chem. Soc. 69, 546.
Pauling, L. (1949). Proc. Roy. Soc. A, 196, 343.
Rundle, R. E. \& Wilson, A. S. (1949). Acta Cryst. 2, 148.

Sanderson, M. J. \& Baenziger, N. C. (1953). Acta Cryst. 6, 627.
Structure Reports for 1947-1948 (1951). 11, 59.
Strukturbericht (1941). 6, 8.

[^0]: * Pauling's radii have been converted to \AA from kX. units.

